Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
h(c(x, y), c(s(z), z), t(w)) → h(z, c(y, x), t(t(c(x, c(y, t(w))))))
h(x, c(y, z), t(w)) → h(c(s(y), x), z, t(c(t(w), w)))
h(c(s(x), c(s(0), y)), z, t(x)) → h(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
t(t(x)) → t(c(t(x), x))
t(x) → x
t(x) → c(0, c(0, c(0, c(0, c(0, x)))))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
h(c(x, y), c(s(z), z), t(w)) → h(z, c(y, x), t(t(c(x, c(y, t(w))))))
h(x, c(y, z), t(w)) → h(c(s(y), x), z, t(c(t(w), w)))
h(c(s(x), c(s(0), y)), z, t(x)) → h(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
t(t(x)) → t(c(t(x), x))
t(x) → x
t(x) → c(0, c(0, c(0, c(0, c(0, x)))))
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
H(c(s(x), c(s(0), y)), z, t(x)) → H(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
H(c(s(x), c(s(0), y)), z, t(x)) → T(c(x, s(x)))
H(x, c(y, z), t(w)) → T(c(t(w), w))
H(c(x, y), c(s(z), z), t(w)) → T(c(x, c(y, t(w))))
H(c(x, y), c(s(z), z), t(w)) → H(z, c(y, x), t(t(c(x, c(y, t(w))))))
H(x, c(y, z), t(w)) → H(c(s(y), x), z, t(c(t(w), w)))
H(c(x, y), c(s(z), z), t(w)) → T(t(c(x, c(y, t(w)))))
T(t(x)) → T(c(t(x), x))
H(c(s(x), c(s(0), y)), z, t(x)) → T(t(c(x, s(x))))
The TRS R consists of the following rules:
h(c(x, y), c(s(z), z), t(w)) → h(z, c(y, x), t(t(c(x, c(y, t(w))))))
h(x, c(y, z), t(w)) → h(c(s(y), x), z, t(c(t(w), w)))
h(c(s(x), c(s(0), y)), z, t(x)) → h(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
t(t(x)) → t(c(t(x), x))
t(x) → x
t(x) → c(0, c(0, c(0, c(0, c(0, x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
H(c(s(x), c(s(0), y)), z, t(x)) → H(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
H(c(s(x), c(s(0), y)), z, t(x)) → T(c(x, s(x)))
H(x, c(y, z), t(w)) → T(c(t(w), w))
H(c(x, y), c(s(z), z), t(w)) → T(c(x, c(y, t(w))))
H(c(x, y), c(s(z), z), t(w)) → H(z, c(y, x), t(t(c(x, c(y, t(w))))))
H(x, c(y, z), t(w)) → H(c(s(y), x), z, t(c(t(w), w)))
H(c(x, y), c(s(z), z), t(w)) → T(t(c(x, c(y, t(w)))))
T(t(x)) → T(c(t(x), x))
H(c(s(x), c(s(0), y)), z, t(x)) → T(t(c(x, s(x))))
The TRS R consists of the following rules:
h(c(x, y), c(s(z), z), t(w)) → h(z, c(y, x), t(t(c(x, c(y, t(w))))))
h(x, c(y, z), t(w)) → h(c(s(y), x), z, t(c(t(w), w)))
h(c(s(x), c(s(0), y)), z, t(x)) → h(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
t(t(x)) → t(c(t(x), x))
t(x) → x
t(x) → c(0, c(0, c(0, c(0, c(0, x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 6 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
H(c(s(x), c(s(0), y)), z, t(x)) → H(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
H(c(x, y), c(s(z), z), t(w)) → H(z, c(y, x), t(t(c(x, c(y, t(w))))))
H(x, c(y, z), t(w)) → H(c(s(y), x), z, t(c(t(w), w)))
The TRS R consists of the following rules:
h(c(x, y), c(s(z), z), t(w)) → h(z, c(y, x), t(t(c(x, c(y, t(w))))))
h(x, c(y, z), t(w)) → h(c(s(y), x), z, t(c(t(w), w)))
h(c(s(x), c(s(0), y)), z, t(x)) → h(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
t(t(x)) → t(c(t(x), x))
t(x) → x
t(x) → c(0, c(0, c(0, c(0, c(0, x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
H(c(x, y), c(s(z), z), t(w)) → H(z, c(y, x), t(t(c(x, c(y, t(w))))))
The remaining pairs can at least be oriented weakly.
H(c(s(x), c(s(0), y)), z, t(x)) → H(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
H(x, c(y, z), t(w)) → H(c(s(y), x), z, t(c(t(w), w)))
Used ordering: Polynomial interpretation [25]:
POL(0) = 1
POL(H(x1, x2, x3)) = x1 + x2
POL(c(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = x1
POL(t(x1)) = 0
The following usable rules [17] were oriented:
none
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
H(c(s(x), c(s(0), y)), z, t(x)) → H(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
H(x, c(y, z), t(w)) → H(c(s(y), x), z, t(c(t(w), w)))
The TRS R consists of the following rules:
h(c(x, y), c(s(z), z), t(w)) → h(z, c(y, x), t(t(c(x, c(y, t(w))))))
h(x, c(y, z), t(w)) → h(c(s(y), x), z, t(c(t(w), w)))
h(c(s(x), c(s(0), y)), z, t(x)) → h(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
t(t(x)) → t(c(t(x), x))
t(x) → x
t(x) → c(0, c(0, c(0, c(0, c(0, x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
H(c(s(x), c(s(0), y)), z, t(x)) → H(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
The remaining pairs can at least be oriented weakly.
H(x, c(y, z), t(w)) → H(c(s(y), x), z, t(c(t(w), w)))
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( c(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( H(x1, ..., x3) ) = | 0 | + | | · | x1 | + | | · | x2 | + | | · | x3 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
none
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
H(x, c(y, z), t(w)) → H(c(s(y), x), z, t(c(t(w), w)))
The TRS R consists of the following rules:
h(c(x, y), c(s(z), z), t(w)) → h(z, c(y, x), t(t(c(x, c(y, t(w))))))
h(x, c(y, z), t(w)) → h(c(s(y), x), z, t(c(t(w), w)))
h(c(s(x), c(s(0), y)), z, t(x)) → h(y, c(s(0), c(x, z)), t(t(c(x, s(x)))))
t(t(x)) → t(c(t(x), x))
t(x) → x
t(x) → c(0, c(0, c(0, c(0, c(0, x)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- H(x, c(y, z), t(w)) → H(c(s(y), x), z, t(c(t(w), w)))
The graph contains the following edges 2 > 2